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Abstract. We consider a relativistic superalgebra in the picture in which the time and spatial derivative
cannot be presented in the operators of the particle. The supersymmetry generators as well as the Hamilton
operators for the massive relativistic particles with spin 0 and spin 1/2 are expressed in terms of the
principal series of the unitary representations of the Lorentz group. We also consider the massless case.
New Hamilton operators are constructed for the massless particles with spin 0 and spin 1/2.

1 Introduction

The aim of the present paper is to construct a relativistic
supersymmetry algebra in the generalized Schrödinger pic-
ture which has been proposed in [1]. In this generalization
the analogue of Schrödinger operators of the particle are
independent of both the time and the space coordinate,
t and x. The derivatives ∂t and ∇x cannot be presented
in these operators. This picture is based on the principal
series of the unitary representations of the Lorentz group.
The non-unitary representations are not useful in the gen-
eralized Schrödinger picture. For a supersymmetric model
in this approach it is necessary to develop a new mathe-
matical formalism in which the supersymmetry generators
are expressed in terms of the principal series of the space-
time independent representations of the Lorentz group.

The principal series correspond to the eigenvalues 1 +
α2 − λ2, (0 ≤ α < ∞, λ = −s, ..., s, s = spin) of the
first C1 = N2 − J2 (N, J are boost and rotation genera-
tors) and the eigenvalues αλ of the second Casimir opera-
tor C2 = N · J of the Lorentz algebra [2–4]. For a particle
with spin 0 as the eigenfunctions of C1 in the momen-
tum representation (p = momentum, p0 =

√
m2 + p2,

m = mass) one can choose the functions (we use here the
notation of [1])

ξ(0)(p, α,n) =
1

(2π)3/2 [(pn)/m]−1+iα, (1.1)

where n is a vector on the light-cone n2
0 − n2 = 0. For a

particle with spin 1/2 the eigensolutions of both operators
C1 and C2 may be written in the form

ξ̃(1/2)(p, α,n) = D(1/2)(p,n)

×D(1/2)(n) ξ(0)(p, α,n), (1.2)

where
a e-mail: rf@thp.uni-koeln.de

D(1/2)(p,n) =
pn + m − iσ · (p×n)√

2(p0 + m)(pn)
,

D†(1/2)(p,n) D(1/2)(p,n) = 1, (1.3)

and the matrix D(1/2)(n) contains the eigenfunctions of
the operator σ · n (D†(1/2)(n)D(1/2)(n) = 1).

From the point of view of a supersymmetric model
the matrices D(1/2)(p,n) D(1/2)(n) in (1.2) and D†(1/2)(n)
× D†(1/2)(p,n) in

D†(1/2)(n)D†(1/2)(p,n)ξ̃(1/2)(p, α,n)

= ξ(0)(p, α,n), (1.4)

may be regarded as matrices which realize supersymme-
try transformations. In this paper we use these matrices to
construct a supersymmetry algebra in terms of the group
parameter α and the vector on the light-cone n. This paper
is set out as follows. First we quote the necessary results
from the Poincaré algebra for the particles with spin 0 and
spin 1/2 in the αn representation. In Sect. 3 in this repre-
sentation the supersymmetry generators are constructed.
In Sect. 4 the massless case is considered. In this section
the supersymmetry generators will be used for the con-
struction of the Hamilton and momentum operators for
the massless particles with spin 0 and spin 1/2 in the αn
representation.

2 The Poincaré algebra

The plane waves ∼ exp[−ixp] in the states in the gen-
eralized Schrödinger picture appear in different represen-
tations. There is no x representation. Consequently, the
spatial derivative −i∇x cannot be used to construct the
Hamilton and the momentum operators of the particle.
For these operators in this approach one must use a space-
time independent representation. Here for the massive rel-
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ativistic particles with spin 0 and spin 1/2 we use the fol-
lowing operators. In [5] it was shown that the functions
(n = (sin θ cos ϕ, sin θ sin ϕ, cos θ))

ξ∗(0)(p, α,n) =
1

(2π)3/2 [(pn)/m]−1−iα (2.1)

are the eigenfunctions of the differential–difference opera-
tors (L(n) := L)

H(0) = m

[
cosh

(
i

∂

∂α

)
+

i
α

sinh
(

i
∂

∂α

)
+

L2

2α2 exp
(

i
∂

∂α

)]
, (2.2)

P(0) = n
[
H(0) − m exp

(
i

∂

∂α

)]
−m

n×L
α

exp
(

i
∂

∂α

)
. (2.3)

These operators satisfy the conditions

H(0) ξ∗(0)(p, α,n) = p0 ξ∗(0)(p, α,n),

P(0) ξ∗(0)(p, α,n) = p ξ∗(0)(p, α,n). (2.4)

In [6], in order to construct the Hamilton H(1/2) and
the momentum operators P(1/2) for a relativistic parti-
cle with spin 1/2 in the αn representation the functions
(ξ(1/2)(p, α,n) are the eigenfunctions of C1)

ξ†(1/2)(p, α,n) = D†(1/2)(p,n)ξ∗(0)(p, α,n), (2.5)

and the conditions

H(1/2) ξ†(1/2)(p, α,n) = p0 ξ†(1/2)(p, α,n),

P(1/2) ξ†(1/2)(p, α,n) = p ξ†(1/2)(p, α,n), (2.6)

were used. The operators H(1/2) and P(1/2) have the form
(J(1/2) = L + σ/2)

H(1/2) =
m

2

[(
α(α + ı) + (J(1/2))2(

α2 + 1
4

) )
exp

(
i

∂

∂α

)

+
α − 3i

2(
α − i

2

) exp
(

−i
∂

∂α

)
− σ · L + 1(

α2 + 1
4

)] , (2.7)

P(1/2) = n
[
H(1/2) − m exp

(
i

∂

∂α

)]
+ m

[
n×σ

2(α + i/2)

−2α(n×L) + (α − i/2)n×σ + (nσ)L
2(α2 + 1/4)

× exp
(

i
∂

∂α

)]
. (2.8)

If in addition to H(s) and P(s) (s = 0, 1/2) we use the
operators of the Lorentz algebra

J(0) := L,

N(0) = αn + (n × L − L × n)/2, (2.9)

J(1/2) = L +
σ

2
,

N(1/2) = αn + (n × J(1/2) − J(1/2) × n)/2, (2.10)

then we have the Poincaré algebra in the spacetime inde-
pendent αn representation

[N (s)
i , P

(s)
j ] = ıδijH

(s), [P (s)
i , H(s)] = 0,

[H(s), N
(s)
i ] = −ıP

(s)
i , (2.11)

[P (s)
i , P

(s)
j ] = 0, [J (s)

i , H(s)] = 0,

[P (s)
i , J

(s)
j ] = ıεijkP

(s)
k , (2.12)

[J (s)
i , J

(s)
j ] = ıεijkJ

(s)
k , [N (s)

i , N
(s)
j ] = −ıεijkJ

(s)
k ,

[N (s)
i , J

(s)
j ] = ıεijkN

(s)
k . (2.13)

For this reason the operators H(0),P(0) and H(1/2), P(1/2)

in the generalized Schrödinger picture can be identified
with the Hamilton and momentum operators for the mas-
sive relativistic particles with spin 0 and spin 1/2, respec-
tively.

In order to define the Hamilton and the momentum
operators for the spin-1/2 particle one can also use the
functions

ξ̃†(1/2)(p, α,n) = D†(1/2)(n)ξ†(1/2)(p, α,n). (2.14)

On the basis of these functions

H̃(1/2) ξ̃†(1/2)(p, α,n) = p0 ξ̃†(1/2)(p, α,n),

P̃(1/2) ξ̃†(1/2)(p, α,n) = p ξ̃†(1/2)(p, α,n), (2.15)

where

H̃(1/2) = D†(1/2)(n)H(1/2)D(1/2)(n),

P̃(1/2) = D†(1/2)(n)P(1/2)D(1/2)(n). (2.16)

In the Poincaré algebra in this case instead of J(1/2),N(1/2)

we have

J̃(1/2) = D†(1/2)(n)J(1/2)D(1/2)(n),

Ñ(1/2) = D†(1/2)(n)N(1/2)D(1/2)(n). (2.17)

Below we use H(0), P(0), J(0),N(0) and H̃(1/2), P̃(1/2),

J̃(1/2), Ñ(1/2) to construct the supersymmetry generators.

3 Supersymmetry generators

In [6] the Hamilton operator H(1/2) was constructed with
the help of the operator

B =
√

m

[
2 cosh

(
i
2

∂

∂α

)
− iσ · L

(α − i/2)
exp

(
i
2

∂

∂α

)]
. (3.1)

This operator was obtained by means of replacing in the
matrix (

√
2(p0 + m))D†(1/2)(p,n) the quantity p0 by H(0)

and the quantities p by P(0):

ξ†(1/2)(p, α,n) = B
ξ∗(0)(p, α,n)√

2(p0 + m)
. (3.2)
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Another operator for which

KB = 2(H(0) + m), BK = 2(H(1/2) + m), (3.3)

has the form

K =
√

m

[
2 cosh

(
i
2

∂

∂α

)
+

2i
α

sinh
(

i
2

∂

∂α

)
+

iσ · L
α

exp
(

i
2

∂

∂α

)]
. (3.4)

Introducing the operators

B̃ = D†(1/2)(n)B, K̃ = KD(1/2)(n), (3.5)

we obtain

K̃B̃ = 2(H(0) + m), B̃K̃ = 2(H̃(1/2) + m). (3.6)

Considering the eigenfunctions of H(0) and H̃(1/2) as su-
perpartner one can define B̃ and K̃ as operators which
realize the following supersymmetry transformations:

B̃ ξ∗(0)(p, α,n) =
√

2(p0 + m)ξ̃†(1/2)(p, α,n), (3.7)

K̃ξ̃†(1/2)(p, α,n) =
√

2(p0 + m)ξ∗(0)(p, α,n). (3.8)

Using the anticommuting operators

Q1 =

(
0 K̃

B̃ 0

)
, Q2 =

(
0 ıK̃

−ıB̃ 0

)
,

we have the relations

Q1
2 = Q2

2 = 2(H + m), (3.9)

[H, Q1] = 0, [H, Q2] = 0, (3.10)

where

H :=

(
H(0) 0

0 H̃(1/2)

)
.

With the help of Q1, Q2 and

J :=

(
J(0) 0
0 J̃(1/2)

)
, N :=

(
N(0) 0

0 Ñ(1/2)

)
,

one can construct other supersymmetry generators. The
generators

Q1i := [Q1, Ji], Q2i := [Q2, Ji], (3.11)

may be expressed in the form

Q1i =

(
0 σiK̃/2

−B̃σi/2 0

)
, Q2i =

(
0 ıσiK̃/2

ıB̃σi/2 0

)
,

from which we can find that (r = 1, 2)

{Qri, Qrk} = −(H + m)δik, (3.12)

[Qr1, J1] =
1
4
Qr, [H, Qri] = 0, (3.13)

and for i �= j �= k

[Qri, Jj ] =
ı

2
εijkQrk. (3.14)

For the commutators [Q1, Ni] and [Q2, Ni] we have

[Q1, Ni] := G1i, [Q2, Ni] := G2i, (3.15)

and we obtain the relations

{Gri, Grk} = −(H − m)δik, (3.16)

{Qr, Gri} = −2ı

(
P

(0)
i 0
0 P̃

(1/2)
i

)
:= −2iPi,

[H, Gri] = 0, [P, Qri] = 0, [P, Gri] = 0,

[Gr1, N1] = −1
4
Qr, (3.17)

and (i �= j �= k)

[Gri, Nj ] = − ı

2
εijkQrk, [Gri, Jj ] =

ı

2
εijkGrk,

[Qri, Nj ] =
ı

2
εijkGrk. (3.18)

We write down the explicit form of G1i:

G1i =

 0

√
m[(g1i)

+
12 + (g1i)

−
12]D(1/2)(n)

√
mD†(1/2)(n)[(g1i)

+
21 + (g1i)

−
21] 0


 ,

where

(g1i)+12 =

[
iN (0)

i + (σ × N0)i

]
2α

exp
(

i
2

∂

∂α

)
, (3.19)

(g1i)+21 =

[
iN (1/2)

i − ni/2 − (σ × N(0))i

]
2(α − i/2)

×exp
(

i
2

∂

∂α

)
, (3.20)

and

(g1i)−
12 =

α − i
2α

[−ini + (n × σ)i] exp
(

− i
2

∂

∂α

)
, (3.21)

(g1i)−
21 =

[−ini − (n × σ)i]
2

exp
(

− i
2

∂

∂α

)
. (3.22)

The supersymmetry generators which are inroduced in
this section give a connection between the states for the
massive particles. The mass in the explicit form appear in
(3.9), (3.12) and (3.16) in the operator product

exp
(

− i
2

∂

∂α

)
exp

(
i
2

∂

∂α

)
.

For the mass-zero particles we must exclude this term.
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4 Massless case

In order to construct the supersymmetry generators for
the mass-zero particles we separate B̃ and K̃ in two parts
corresponding to the operators exp

( i
2

∂
∂α

)
and

exp
(− i

2
∂

∂α

)
, respectively

B̃+ =
√

µD†(1/2)(n)
[
1 − iσ · L

(α − i/2)
)
]

exp
(

i
2

∂

∂α

)
,

B̃− =
√

µD†(1/2)(n) exp
(

− i
2

∂

∂α

)
, (4.1)

K̃+ =
√

µ

[
α + ı + iσ · L

α

]
D(1/2)(n) exp

(
i
2

∂

∂α

)
,

K̃− =
√

µ

[
α − ı

α

]
D(1/2)(n) exp

(
− i

2
∂

∂α

)
. (4.2)

With the help of these operators one can construct two
types of representations of the supersymmetric genera-
tors: representations with B̃+, K̃+ and representations
with B̃−, K̃−. In (4.1) and (4.2) we have introduced a
constant µ with the dimension of mass in order to deal
with dimensional operators.

Let us first start with the case of B̃+, K̃+. In Qr we re-
place B̃ by B̃+ and K̃ by K̃+. The results can be obtained
from formulas (3.9) to (3.18) by substituting

Qr→Q+
r , Qri→Q+

ri = [Q+
r , Ji],

Gri→G+
ri = [Q+

r , Ni], (4.3)

Q+
1i =

(
0 σiK̃

+/2
−B̃+σi/2 0

)
,

G+
1i =

(
0

√
µ[(g1i)+12]D

(1/2)(n)√
µD†(1/2)(n)[(g1i)+21] 0

)
.

From

Q+
r

2 = 2

(
H

+(0)
0 0
0 H̃

+(1/2)
0

)
:= 2H+

0 ,

and

{Q+
r , G+

ri} = −2ı

(
P

+(0)
0i 0
0 P̃

+(1/2)
0i

)
:= −2iP+

0i ,

we obtain the operators (the explicit forms of P
+(0)
0i and

P̃
+(1/2)
0i are given in the appendix)

H
+(0)
0 = µ

[
α(α + ı) + L2

2α2

]
exp

(
i

∂

∂α

)
, (4.4)

H̃
+(1/2)
0 = µ


α(α + ı) +

(
˜
J( 1

2 )
)2

2
(
α2 + 1

4

)
 exp

(
i

∂

∂α

)
, (4.5)

which satisfy the conditions

(H+(0)
0 )2 − (P+(0)

0 )2 = 0,

(H̃+(1/2)
0 )2 − (P̃+(1/2)

0 )2 = 0, (4.6)

and the commutation relations of the Poincaré algebra.
Instead of (3.12) and (3.16) we have

{Q+
ri, Q

+
rk} = −H+

0 δik, {G+
ri, G

+
rk} = −H+

0 δik, (4.7)

and one can consider H
+(s)
0 , P+(s)

0 as the Hamilton and
momentum operators for the mass-zero particles.

In order to go over to the case with K̃− and B̃−, we
must replace in Qr, Qri, Gri the generator B̃ by B̃− and
the generator K̃ by K̃−. From Q−

1 and

Q−
1i =

(
0 σiK̃

−/2
−B̃−σi/2 0

)
,

G−
1i =

(
0

√
µ[(g1i)−

12]D
(1/2)(n)√

µD†(1/2)(n)[(g1i)−
21] 0

)
,

we obtain

Q−
1

2
= 2H−

0 , {Q−
1 , G−

1i} = −2iP−
0i , (4.8)

with

H
−(0)
0 = µ

[
(α − ı)

2α

]
exp

(
−i

∂

∂α

)
,

H̃
−(1/2)
0 = µ

[ (
α − 3i

2

)
2
(
α − i

2

)] exp
(

−i
∂

∂α

)
, (4.9)

P−(0)
0 = nH

−(0)
0 , P̃−(1/2)

0 = nH̃
−(1/2)
0 . (4.10)

For these operators we also have the conditions

(H−(0)
0 )2 − (P−(0)

0 )2 = 0,

(H̃−(1/2)
0 )2 − (P̃−(1/2)

0 )2 = 0, (4.11)

and the commutation relations of the Poincaré algebra.
Additionally,

{Q−
ri, Q

−
rk} = −H−

0 δik, {G−
ri, G

−
rk} = −H−

0 δik, (4.12)

[H−
0 , G−

ri] = 0, [P−
0 , Q−

ri] = 0, [P−
0 , G−

ri] = 0. (4.13)

For the eigenfunctions of H
−(0)
0 and P−(0)

0 we may choose
(−∞ < γ < ∞)

Ψ−(0)(α,n, γ,n
′
) =

1√
πα

exp(−γ +iαγ)δ(n−n
′
). (4.14)

Here the eigenvalues of H
−(0)
0 are determined by k0 =

µ eγ

2 , and the eigenvalues of P−(0)
0 by k = k0n

′
. For the

eigenfunctions of H̃
−(1/2)
0 and P̃−(1/2)

0 we have

Ψ−(1/2)(α,n, γ,n
′
) = B̃− Ψ−(0)(α,n, γ,n

′
)√

2k0
. (4.15)
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With the help of Q−
r, Q

−
ri and G−

ri, one can find other eigen-
functions of H−

0 , P−
0 .

If we return to the massive particles with B̃++B̃− and
K̃+ + K̃−, we can find that in this case the mass in (3.9),
(3.12) and (3.16) may be expressed through the constant
µ for the massless particles. Particularly, for the particles
with spin 0 we obtain

H(0) = H
+(0)
0 + H

−(0)
0 , (4.16)

m = (K̃+B̃− + K̃−B̃+)/2 = µ. (4.17)

5 Conclusion

We have shown that in the generalized Schrödinger pic-
ture a relativistic superalgebra may be constructed by us-
ing the principal series of the unitary representation of
the Lorentz group. In the construction the Poincaré alge-
bra for the massive particles with spin 0 and spin 1/2 in
terms of the invariant parameter α and the vector on the
light-cone n was used. In this representation we found the
explicit form of the supersymmetry generators. For the
massless case we have used two types of representations
of the supersymmetry generators to construct new Hamil-
ton and momentum operators for such particles with spin
0 and spin 1/2.
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Appendix

Momentum operators

The momentum operators for the massless case in (4.6)
may be written as follows:

P+(0)
0 = nH

+(0)
0 − µ

1
α

exp
(

i
∂

∂α

)
N(0), (A1)

P̃+(1/2)
0 = n

[
H̃

+(1/2)
0 − µ exp

(
i

∂

∂α

)]
− µD†(1/2)(n)

×2α(n×L) + (α − i/2)n×σ + (nσ)L
2(α2 + 1/4)

×D(1/2)(n) exp
(

i
∂

∂α

)
]. (A2)
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